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During the day, the shallower regions of a reservoir sidearm absorb more heat per 
unit volume than the deeper parts, leading to a horizontal pressure gradient that  
drives a circulation in the sidearm. At night, the shallow regions cool more rapidly, 
leading to a circulation in the opposite direction. Since the spin-up time of a typical 
sidearm is a t  least of the same order as a day, the flow within a diurnally forced 
sidearm is principally an inertia-buoyancy balance. Tn this paper, a diurnally forced 
sidearm is modelled by periodically forced natural convection in a triangular cavity. 
The periodic forcing enters the model via an internal heating/cooling term in the 
temperature equation. Reservoir sidearms typically have small bottom slopes and 
this fact can be exploited to  obtain asymptotic solutions of the resulting equations. 
These solutions clearly demonstrate the transition from the viscous-dominated flow 
in the shallows to the inertia-dominated flow in the deeper parts. I n  the inertia- 
dominated region, the flow response significantly lags the forcing. Numerical 
solutions of the full nonlinear problem are consistent with the asymptotic solutions. 

1. Introduction 
The understanding of the fluid mechanics of lakes and reservoirs has expanded 

rapidly in recent years owing to the importance of fluid dynamical processes for 
determining the quality of water supply. A recent review of dynamical processes 
pertinent to lakes and reservoirs can be found in Imberger & Patterson (1990). In  
particular, processes that give rise to horizontal rather than vertical transport of 
water properties have received considerable recent attention. An example of a 
limnological situation where horizontal processes play a part in the overall dynamics 
is differential heating or cooling which occurs when neighbouring regions of the same 
water body are heated or cooled relative to each other. This leads to a horizontal 
pressure gradient due to thermal expansion that can drive a significant flow. The 
flooding of a reservoir basin usually involves the inundation of many small valleys 
around its perimeter. These flooded valleys (which are then called sidearms) are 
typically only tens to hundreds of metres long and only a few metres deep where they 
join the main body of the reservoir. Sidearms are often well protected from the wind 
and so thermal forcing associated with heating and cooling is an important 
mechanism for promoting exchange of water between the sidearm and the main body 
of the reservoir. 

During the day, the water column absorbs solar radiation according to Beer’s law 
(see, for example, Kirk 1986) ; the intensity of the light decays exponentially with 
depth and the rate of decay is a function of the wavelength of the light and the 
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turbidity of the water. This leads to a shallow surface layer that can be several 
degrees warmer than the underlying water. Near the shore, topographic effects 
become important as the heat absorbed is distributed over a decreasing depth and 
the water in the shallows becomes, on average, warmer than the deeper offshore 
regions. As pointed out by Monismith, Imberger & Morrison (1990), this heating 
mechanism leads to the temperature scaling with the inverse of the distance from the 
shore, This temperature structure drives a surface outflow of warm water from the 
edges of a reservoir sidearm. Flows due to this mechanism have been observed by 
Adams & Wells (1984) and Monismith et al. (1990) with measured velocities of the 
order of 5 cm s-l. These studies also indicated that the three-dimensional topography 
of a reservoir sidearm leads to a complicated three-dimensional velocity and 
temperature structure. 

At night, surface cooling leads to a circulation in the opposite direction. Surface 
cooling destabilizes the surface waters that have been stabilized during the day, 
leading to a deeper surface mixed layer. This mixed layer is approximately 
isothermal except near the edges of the sidearm where the local depth is less than 
that of the mixed layer, In  this region, heat loss occurs approximately uniformly over 
the local depth but at a greater volumetric rate as the depth decreases since an 
approximately constant surface flux is distributed over a decreasing depth. The 
cooler water at the edges of the sidearm travels under gravity down the sloping 
bottom away from the boundaries, setting up a circulation in the opposite direction 
to  the daytime circulation. 

I n  the absence of wind or other momentum inputs, the flows described above can 
be classified as natural convection, for which there is a large body of literature. 
Natural convection in shallow cavities is the aspect most relevant to the geophysical 
phenomena considered in this paper. 

Sturm (1981) and Jain (1982) studied a cooling pond sidearm and their studies are 
relevant to the present situation. In those papers, steady-state integral solutions for 
heat and mass fluxes in idealized cooling pond sidearms were found which are 
consistent with the experimental results of Brocard & Harleman (1980). Poulikakos 
& Bejan (1983) found the steady-state flow and temperature structure in an attic 
space with a horizontal bottom and an arbitrarily shaped heated upper boundary 
using asymptotic methods. I n  more directly geophysically motivated studies, Scott 
& Imberger (1988) and Scott (1988) considered the steady-state flow in three- 
dimensional cavities of arbitrary geometry which were used to model estuarine 
dynamics. Those studies considered the steady-state density and flow structures in 
two- and three-dimensional estuaries subject to a number of buoyancy and 
momentum inputs, again using asymptotic methods. 

All this work has been for steady-state conditions. However, Monismith et al. 
(1990) show that the spin-up time for a typical uidearm is a t  least of the same order 
as the period of the diurnal forcing which means that, at least in the deeper parts of 
a sidearm, steady state is not achieved within one period of the diurnal cycle. This 
was confirmed by the observations of Monismith et al. where the night-time flow in 
the sidearm did not reverse until about seven hours after the heat flux a t  the surface 
had changed from cooling t o  heating. Consequently, the flow is intrinsically unsteady 
and the transient behaviour must also be included in a model of sidearm behaviour, 
a t  least for the diurnally forced case. 

Patterson (1984) studied transient natural convection in an internally heated 
rectangular cavity which was initially isothermal and a t  rest. he found that the 
approach to steady state could be classified as either conductive, transitional or 
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conveetivr depending on the value of the Grashof number Gr relative to  combinations 
of the aspect ratio of'the cavity and the Prandtl number (T = w/K of the fluid, where 

Gr = ga ATh3/v2. (1) 
In ( 1 )  and the definition of cr, g is the acceleration due to gravity, a is the thermal 
expansion coefficient, AT = Qo hP/v where Qo is the magnitude of the volumetric 
heating rate, 1 is the length of the cavity, h is the height of the cavity, v is the 
kinematic viscosity and K is the thermal diffusivity. The classifications could be 
further divided into sub-classifications characterized by the relative magnitude of 
various timescales of the flow and the nature of the internal balances at steady state. 
In  some cases, the approach to steady state was oscillatory, but in all cases it was 
achieved in a timescale of h 2 / v  which is just the time it takes for viscosity to diffuse 
momentum across the depth of the cavity. For a reservoir sidearm, h is typically 5 m, 
leading to a spin-up time of - 2.5 x lo7 s (x 250 days) for molecular viscosity or - 2.5 x lo5 s (z 2.5 days) for a typical value of the eddy viscosity of lop4 m2 s-l. 
Thus, even if the flow is turbulent, the spin-up time is comparable to the timescale 
of the forcing and so, as already discussed, the flow in a typical sidearm is 
intrinsically unsteady. 

There are very few analytical or experimental studies aimed at understanding the 
transient response of a cavity with sidearm geometry to thermal forcing, Patterson 
( 1987) numerically investigated the daytime circulation, assuming that the heat 
input was uniformly distributed over the local depth in a triangular cavity. Further 
assuming that the bottom of the model sidearm was perfectly reflective and the 
bottom slope was small led to a horizontally linear internal heating source term. An 
additional feature of this model was an adjustment of the mean heat input so the 
system would reach steady state. The results of Patterson (1987) show that even 
though the internal heating is vertically uniform, advection ultimately sets up a 
strong stratification with horizontal isotherms in the majority of the cavity and 
vertical isotherms occurring only in the shallow tip region. 

Horsh & Stefan (1988) numerically studied the night-time cooling phase in a 
triangular cavity with a fixed heat flux a t  the surface. They found that the flow 
initially consisted of a number of recirculating regions associated with sinking 
plumes of cooled surface water. At the same time, a gravity current of cold water 
emerged from the tip and flowed down the sloping bottom in much the same manner 
as the currents observed by Monismith et al. (1990). After a sufficiently long time, the 
gravity current ejected from the tip travelled the length of the flow domain and 
Horsh bt Stefan found that the recirculating regions coalesced as the gravity current 
began to dominate the flow, ultimately leading to a single cell occupying the entire 
cavity. 

Despite the fact that the spin-up time for flow in a sidearm is of the same order as 
the period of the forcing, there appear to be no analytical or experimental studies of 
periodically forced natural convection in sidearm geometries. In  the sidearm case, 
the interaction between the timescales of the forcing and the timescales of the 
response is of primary interest. The observations of Monismith et al. (1990) show that 
the flow in a sidearm can significantly lag the forcing. The factors that determine this 
lag and the influence it has on the flow structure within the sidearm are issues that 
will be examined in this paper. 



146 D ,  E .  Farrow and J .  C. Patterson 

2. Model formulation 
The flow in a reservoir sidearm is modelled by the two-dimensional flow of a fluid 

contained in the infinite wedge 0 < 2’ < -Ax’, where x’ is the horizontal coordinate 
measured from the tip and z’ is the vertical coordinate measured positive upwards 
from the upper boundary. Figure 1 shows the geometry of the flow domain. This flow 
domain is the simplest possible that allows for a non-uniform depth. Although 
Poulikakos & Bejan (1983) discuss the influence of a more general geometry in their 
discussion of the fluid mechanics of an attic space, their solution is for the steady- 
state problem with different boundary conditions and is not applicable here. In that 
paper, z’ = -As’ is replaced by z’ = -Af(x’). However, as A + 0 only f(x’) and 
df(x’)/dx’ affect the flow. Specifically, f (x’)  and df(x’)/dx’ only affect the magnitude 
of the local horizontal pressure gradient (Poulikakos & Bejan 1983). Hence in this 
paper, where only the A -+ 0 equations are solved, there is little to gain by having a 
more general bottom shape. 

Temperature differences in reservoir sidearms are typically small and so the 
Boussinesq approximation for the density is appropriate. The diurnal forcing of 
the flow is modelled by an internal heating and cooling term included in the temper- 
ature equation. This term is formulated by distributing a surface heat flux of I = I ,  
cos (2nt’lP) Wm-2 (where I ,  is the maximum heat flux, t’ is time and P is the period 
of one day) uniformly over the local depth. This leads to a heat source/sink term in 
the temperature equation of the form 

T 

&(X’, t ’ )  = l o  cos (2xt’/P) “C s-1. 
PO %Ax’ 

The Ax’ that appears in the denominator of Q is just the local depth over which the 
heat flux has been distributed. In  (2), po is the reference density and C, is the specific 
heat of water. The magnitude of Q increases towards x’ = 0. This will give rise to 
larger temperature gradients there, consistent with field observations. The restriction 
to a vertically uniform heating/cooling term in this model is a significant 
simplification of the somewhat more complex heat input/output mechanisms 
operating in a real sidearm. The model formulated in this paper is expected t o  be 
relevant in the near-shore region where topography dominates. A more sophisticated 
model for the thermal forcing would considerably complicate subsequent analysis 
and involve extra parameters characterizing the type of forcing. It is for these 
reasons that this work is restricted to a vertically uniform thermal forcing. 

The non-dimensionalization of the resulting system of equations proceeds as 
follows. There is a clear timescale for the flow given by P, the period of the forcing. 
The assumed geometry of the flow domain imposes no natural lengthscale but there 
is a vertical lengthscale (UP); where v is the viscosity of the water which, for 
simplicity, is assumed to be constant. This lengthscale is just the distance over which 
viscosity is able to act within one period of the forcing. This is the fundamental 
lengthscale of the flow and it is used to non-dimensionalize the vertical coordinate. 
The geometry of the flow domain then imposes a horizontal lengthscale 
A-l(vP)t .  Balancing the unsteady term in the temperature equation with the internal 
heating/cooling term gives rise to a temperature perturbation scale of 
I ,  P/(po C, ( vP)’). A balance between the vertical pressure gradient and buoyancy 
yields a scale for the pressure which when balanced with horizontal shear yields the 
horizontal velocity scale Agd,  P2/(po C, (UP);), where a is the coefficient of thermal 
expansion. Finally, the continuity equation yields a vertical velocity scale 
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FIGURE 1. Sketch of the geometry of the flow domain showing the origin of the coordinate 
system at the tip of the wedge. 

A2gorIo P2/ (po P ,  (VP);).  Introducing a non-dimensional stream function $ yields the 
conservation of vorticity and heat equations 

+t22 + A 2 ~ t x s  +A2W$X $222 - +z +22x +A2($,  +xxz - $2 $ x x s ) )  

= @z2zz +2AVZzzz  +A4@,,,, + Tx, (3) 

(4) and 

with the boundary conditions 

aT/at +A2Gr( - @z Tx + $x T,) = (A2$, +T,,)/a+ cos (27rtj/2, 

@ = @ z 2 = 0 ,  T , = O  on x = O ,  (5) 
+ = +z = 0,  ( T , + A ~ T , ) / ( ~  + A ~ ) $  = 0, on x = -x, (6) 

and the initial conditions @ = I' = 0 at t = 0 where u = - $ z ,  w = II., and all 
variables are now non-dimensional, and the non-dimensional parameters for the 
problem are the bottom slope A ,  the Prandtl number cr = V / K  and Gr the Grashof 
number which is now given by 

Or=-. @0P2 

Po c, V 

The boundary conditions (5) and (6) arise from the assumptions that the upper 
surface z = 0 is not deformed and is stress free, the sloping bottom boundary is rigid 
and that all heat input/output in the system is included in the internal source/sink 
term in (4). This last assumption leads to all boundaries being insulated. The system 
of equations (3)-(6) is unsteady and nonlinear making a full analytical solution 
difficult to obtain. In the next section, asymptotic solutions for the temperature and 
velocity fields are found as the bottom slope A becomes small. 

3. Asymptotic solution 
The small parameter A appears as even powers in the boundary-value problem 

(3)-(6). Following Cormack, Leal & Imberger (1974), the dependent variables are 
expanded as a series in A 2 :  

(7) 
Substituting these expressions into (3) and (4) and equating like powers of A yields 

T = T(O) +A27'(2) +A45!"4) + . , . , $ = @(O) +A2$(2) +A4@(4) + . . . . 
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a system of linear partial differential equations that can, in principle, be solved 
recursively. The general O(An) equations are (n even) 

@$;; + $jw;2) + (r'r c [$y $gz-k--2) - ( k )  (n  k 2 )  
n-2 

42 $2,; -' 1 
k=O 

k even 
n-4 

+cr C [$($ $pz;k--4)- $z (k) $E;k-4)] = $giz + 2$$&:) + $zit) + Tp) (8) 
k=O 

k even 
and 

k even 

with boundary conditions 

and initial conditions 
$(n) = T(") = 0 at  t = 0 

where quantities with negative superscripts are zero. 
Only the O(Ao)  equations are solved here and these are 

$.I:: = k:",!, + T$", 
TjO' = T g / a +  cos ( 2 7 c t ) / X  

with boundary conditions 
$(O) = $2) = 0, Ti'') = 0 on z = 0, 

= $+p = 0, TP)=O on z =  -x, 
and the initial conditions 

$ ( O )  = / T ( O )  = 0 at t = 0. 

Thus, at zero order, the flow is set up in the following way. The fluid in the cavity 
is differentially heated or cooled. This leads to a pressure field that drives a gentle 
circulation. So gentle, in fact, that the background temperature field and the 
resulting circulation are decoupled. The question of the validity of these asymptotic 
equations is addressed later. 

From ( 1  3), T(O) can be obtained by direct integration to give 

T(O) = sin (2nt)/2nx. (17) 
Thus, as mentioned earlier, the main balance as A --f 0 is between the internal source 
and the unsteady term. Because of this and the fact that horizontal conduction is an 
O(A2)  effect, the temperature is independent of the Prandtl number 0-. This 
temperature structure varies with time representing the change in sign of the 
horizontal gradient from day to night. The zero-order temperature solution (17) is 
very simple but it still has some of the desired features that make it consistent with 
observed sidearm temperature fields. In particular, the magnitude of the horizontal 
gradient and T(O) increases as x+O. 
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Recall that the temperature source term in the zero-order temperatnre equation 
(13) is cos (2nt) lx  so the temperature (17)  lags the forcing by one quarter o f a  period. 
This corresponds to 6 hours in the diurnal cycle. Tn other words, the horizontal 
temperature gradient in a typical sidearm will not reverse until about 6 hours after 
the net heat transfer into or out of the sidearm has changed sign. 

Substituting for the horizontal temperature gradient yields the equation for $ ( O )  

I@; = $g’,, - sin (2nt)/2nx2 (18) 
with the boundary conditions (14) and (1 5). 

The solution can be found by taking Laplace transforms in t ,  the details of which 
are not included here. The solution for the horizontal velocity u(O) = -alC.(”’/az is 
given by 

viscous response 

u y x ,  2 ,  t )  = sin (2nt) (2 + x) (82’ + z z  - z’) 1 
96nx’ 

-~ 

a, 4 

where Pn are the non-zero positive roots of the equation sinp, = Pn cosp,. 

4. Discussion of the asymptotic solution 
Some of the components of the zero-order velocity (19) have been labelled to 

identify the physical balance that gives rise to those components. The unlabelled 
components in the summation term of (19) yield the vertical structure of the velocity. 
The most important distinction to  draw between the various components is between 
the large-time periodic components and the transient components. Note that the size 
of the domain is unlimited and so there is no upper bound on x. Also, the e-folding 
time of the transient terms of (19) is 

t ,  = ( x / P , ) ~  w 0.0495~’. (20) 
This means that for any finite value of t ,  there will always be a value of x for which 
the transient terms are significant. However, for a finite x, there will be a time after 
which the transient terms are negligible so it makes sense to refer to the transient and 
large-time responses. The two regimes will be discussed separately though there are 
many common features. 

4.1 Large-time velocity behaviour 
The large-time periodic behaviour of the velocity do) has two components : the 
‘viscous response’ and the ‘inertial response’. The viscous response arises from an 
internal balance between the horizontal pressure gradient and vertical shear. This 
part of the solution dominates the inertial response as x -+ 0. This behaviour can be 
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FIGURE 2 .  Contours of the large-time surface velocity in the (t,x)-plane. The solid contour is the 
zero contour and plots the position of an up/downwelling front that emerges from x = 0. The 
contour interval is 
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FIGURE 3. Velocity profiles at 3: = 1 near the time that there is a reversal of the flow. The pressure 
gradient reverses at  t = 0.5. At t = 0.54, a three-layer structure in the flow is evident. 

physically explained as follows. As the depth decreases, the time taken for viscosity 
t o  act over the local depth decreases, that is, the flow develops more rapidly as 
x+ 0. In the limit as x+O, u(") responds instantaneously to changes in the pressure 
gradient which locks the phase of u(O) to that of the pressure gradient. 

The inertial response arises from an internal balance between the inertia of the 
fluid and the horizontal pressure gradient. Interpretation of this component is 
complicated by the fact that even though the temporal behaviour of this term is 
dominated by inertia, the actual velocity profile is governed by vertical shear. For 
x 9 1. this component dominates the viscous response and lags the pressure gradient 
by one quarter of a period. 
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t 
FIGURE 5 .  Contours of the surface velocity in the (t,r)-plane for a few periods of the forcing 

after its initiation. The solid contour is the zero contour. The contour interval is 2 x lo3. 

A summary of the large-time periodic behaviour of the velocity is shown in figure 
2. In  this figure, contours of the surface velocity u(o)Iz,o a t  large times are shown over 
one and a quarter periods of the forcing. I n  this plot, t = 0 corresponds to the reversal 
of the temperature gradient from positive to negative and thus marks the beginning 
of the daytime circulation pattern. The solid contour is the zero contour and thus 
represents a point on the surface where the surface velocity changes sign. A t  this 
point, the flow is either upwelling or downwelling depending on the sign of the 
horizontal pressure gradient. If the flow is outwards at  the surface near the tip 
(corresponding to  a negative horizontal pressure gradient) then the solid contour 
plots the position of a downwelling front as it moves out from x = 0. The front 
emerges from x = 0 as soon as there is a reversal of the pressure gradient, reflecting 
the rapid response of’ the viscous-dominated flow there. As time increases, the front 
moves outward, slowing briefly near x = 2 before moving rapidly off to x = co 
precisely one quarter of a period after i t  emerged from x = 0. After the front has 
moved off to x = co the surface velocity has the same sign everywhere, meaning that 
the circulation in the sidearm has been completely reversed by the reversed pressure 
gradient. One quarter of a period after the front has moved off to x = cc , a new front 
(with the opposite sign) emerges from x = 0 and exhibits the same behaviour. 

Thus the large-time periodic behaviour of the velocity is characterized by an 
up/downwelling front emerging from x = 0 every time there is a reversal of the 
horizontal pressure gradient. 

Figure 3 shows a series of velocity profiles at x: = 1 near the time that there is a 
reversal of the flow. Note that a t  t = 0.52, the velocity profile is very close to the 
classic cubic profile of Cormack, Stone & Leal (1975) for the flow in a shallow, 
differentially heated rectangular cavity with a stress-free surface. In fact, the 
component labelled the ‘viscous response’ in (19) is identical (up to a multiplicative 
constant and a coordinate transformation) to that obtained by Cormack et al. (1976). 
The pressure gradient reverses a t  t = 0.5, when an (in this case) upwelling front 
emerges from x = 0. The flow near z = - 1 is the first to reverse. This is to  be 
expected since the flow near the rigid boundary is dominated by viscous effects 
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(rather than inertia) and thus will respond more rapidly to  the reversal of the 
pressure gradient. As time increases, the horizontal pressure gradient overcomes the 
inertia of the fluid and, combined with vertical shear, reverses the entire flow a t  
t % 0.55. Note that at t = 0.54, there is a three-layer velocity structure with outflow 
both a t  the surface and near the bottom boundary. 

The three-layer structure of the flow can clearly be seen in figure 4 where 
streamlines are plotted for various times. The internal structure of the front can be 
deduced from the position of the zero streamline, which is a dividing streamline ; this 
streamline divides the flow into two regions circulating in opposite directions. The 
front detaches from the sloping bottom z = -x at t = 0 and moves into the interior 
of the domain. The point where the front intersects the surface z = 0 corresponds to 
the propagating fronts discussed previously. At t = 0.20, the two regions circulating 
in opposite directions can be seen clearly. The front continues to move outwards as 
time progresses, and at  t = 0.25 the front has moved off to  x = co and the flow in the 
sidearm has completely reversed. The flow continues to  accelerate with the size of the 
recirculating region evident at t = 0.3 increasing, ultimately encompassing the entire 
domain. 

4.2. Transient velocity behaviour 
The discrepancy in tirnescales for different values of x leads to an interesting 
phenomenon in the transient flow that can be seen in figure 5. In this figure, contours 
of the surface velocity U ( O ) ( ~ = ~  are plotted in the ( t ,  x)-plane over several periods of the 
forcing after the forcing is initiated. Thus, u(O) = 0 a t  t = 0. The pressure gradient is 
negative from t = 0 to 0.5 and the surface velocity is positive everywhere in this 
region, indicating that there is a warm surface outflow. At t = 0.5, the pressure 
gradient reverses and a weak upwelling front emerges from x = 0 in a similar way to 
the fronts discussed previously. The front behaves slightly differently however as it 
moves out more slowly and does not move oRto x = co until t = 1.0 when there is 
a reversal of the pressure gradient. Thus the front here is present for twice as long 
as the fronts discussed in the previous section. This is because for x % 1 and small 
times, viscosity is barely influencing the flow and the inertia gained by the fluid 
between t = 0 and 0.5 is only just overcome by the pressure gradient between t = 0.5 
and 1 .O. In  the limit as x .+ co , vertical shear has no effect on the flow and the flow 
there will not be reversed. This means that the two zero contours asymptotically 
approach each other. The fact that there is a change in sign of the surface velocity 
just before t = 1 .0  reflects the small effect, that viscosity has had up t o  that time. 

Of particular interest here is that shortly after the pressure gradient reverses a t  
t = 1.0 and a downwelling front moves out from x = 0, a short-lived upwelling front 
moves in towards the tip from x = 00. The two fronts meet near x = 3 at t = 1.17 and 
cancel each other out. After the fronts have met, the circulation in the whole sidearm 
is in one direction with a warm outflow at the surface. This curious sequence of events 
is repeated one period later near t = 2.0 with some modifications to the behaviour. 
The downwelling front that  emerges from x = 0 at t = 1.5 moves off to x = 00 more 
rapidly than the front that appeared shortly after t = 0.5. Also, the front that 
appears from x = 00 emerges a little later in the cycle. This leads to the two fronts 
meeting further out near x = 4. Finally, it takes a little longer for the two fronts to 
meet, which occurs at t w 2.2 .  This change in the behaviour reflects the increasing 
importance of viscosity for x > 1.  As time increases, viscosity diffuses the effect of the 
boundaries into the core region of the flow. Yet another period later, the same 
sequence of events occurs with similar modifications. 

The internal evolution of the two surface fronts is shown in figure 6 where 
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FIUURE 7 .  Velocity profiles at  x = 5 for a number of times just after the 
has been initiated. 

forcing 

streamlines are plotted for various times. The pressure gradient reversed at t = 1.00 
and in the first plot, at  t = 1.10, only one front is evident which emerged from 
x = 0 at t = 1.00. At t = 1.12, the second front that appeared from large 5 can be seen 
at  the right of the plot. As the two fronts move towards each other, the flow between 
them is decelerating ( t  = 1.12-1.14) while the flow outside this region (x 4 1 and 
x % 1) is accelerating. These two regions have different internal balances. For x 4 1, 
the viscous-dominated flow there is responding rapidly to the increasing pressure 
gradient. Thus the flow for x 1 is accelerating because the pressure gradient is 
increasing. For x 9 I ,  even though the flow is dominated by inertia, the pressure 
gradient does not have much inertia to overcome and has thus reversed rapidly. The 
flow for x $- 1 is dominated by inertia and thus would accelerate even if the pressure 
gradient was constant. At t = 1.16, the fronts now form a closed streamline within 
the flow. As time moves on (t = 1.16-1.18), the size of the closed-off region associated 
with the closed streamline decreases as does the magnitude of the circulation within 
it. At the same time, the magnitude of the circulation outside is increasing because 
of the favourable pressure gradient At  t = 1.20, the closed zero streamline has 
vanished altogether and the remaining flow consists of two regions circulating in the 
same direction. The flow continues to accelerate ( t  = 1.20-1.26) and the initially 
distinct regions of circulating fluid slowly merge. 

The internal velocity structure is characterized by an initial balance between 
inertia and the horizontal pressure gradient. This balance is maintained until 
viscosity has had sufficient time to diffuse the effect of the boundaries into the core 
region of the flow. Figure 7 shows a series of velocity profiles at  x = 5 for various 
times after the forcing has been initiated. For small times, the flow away from the 
boundaries is a linear function of z which reflects the fact that the effect of the 
boundaries has not yet been felt by the core flow and the balance is between the 
horizontal pressure gradient and inertia. 

8 FLM 246 
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4.3. Validity of the asymptotic solution 
Because the O(Ao) temperature T(O) is singular a t  x = 0 and hence the horizontal 
gradient of T(O) is also singular, the range of validity of the asymptotic solution needs 
to be addressed. It can be shown that do) has the following properties: 

l / x  as x + m ,  
x as x+ 0. 

u(0) cc 

Now, the exact temperature equation is 

0 ( A 0 )  0 ( A 0 )  WO) 

(22) 

h 

where it has been made explicit which terms are included in the O(Ao) solution. Using 
the O(Ao) solution yields the following estimates for each of the terms in the above 
equation : 

aT/accl /x  as x+O,co,)  
uaT/axcc  l / x  as x+O, 

a2T/i3x2 cc l / x 3  as x+ 0,  co, 
cc i/x2 as x+co, 

where the constant of proportionality will actually be a function of time. The 
remaining terms (wT, and Cz) are identically zero a t  O(Ao).  The asymptotic solution 
will give a reasonable solution as long as the terms that are not included in the O(Ao) 
equation are smaller than those that are included. This is certainly the case for 
sufficiently large x.  However, as x+O, the horizontal conduction term T,, is 
proportional to l/x3, while the terms included in the O(Ao) equation are proportional 
to l /x .  This means that no matter how small A is, there will always be some region 
near the tip where the asymptotic solution will fail. The extent of the region will 
depend on the value of A .  

Even though the asymptotic solution fails near x = 0, the effect on the solution is 
relatively minor. The failure arises because the zero-order equation does not include 
horizontal conduction, which plays a dominating role for small x. The effect of 
horizontal conduction is to reduce the magnitude of the horizontal temperature 
gradients there. This in turn will lead to a reduction in the associated horizontal 
velocity. Thus, the failure of the asymptotic solution in the tip will lead to an 
overestimation of the velocities there. Again, the amount that the velocities are 
overestimated by will depend on the value of A .  

5. Numerical simulation 
The asymptotic solutions of this paper are only valid for A 4 1 and moderate Gr 

and do not provide insight into higher-order effects such as advection. The numerical 
simulation that will be described in this paper has two aims. The first is to validate 
the O(Ao) solutions found earlier in this paper and the second is to provide some 
insight into higher-order, particularly nonlinear, behaviour. 

Owing to the difficulty of finding exact solutions for general natural convection 
problems, there is a large body of literature devoted to numerically modelling 
convective flows. A recent review of numerical methods applicable to convective 
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flows can be found in Patankar (1988). The method used in this paper is adapted from 
a method described by Armfield (1991) which includes a survey of more recent 
numerical schemes. 

The wedge-shaped geometry of the flow domain suggests formulating the problem 
in polar coordinates. For the analytical problem considered in $ $ 2 4 ,  there is no 
advantage in using polar coordinates. However there are considerable numerical 
advantages associated with having the boundaries of the flow domain lying on 
coordinate lines. The equations of motion become, after using the non-dim- 
ensionalization scheme described above with r and 6 scaling with A-'(vP); and A 
respectively, 

u-+-w-+-wu aw 1 aw i = 1 aP 
ar r 36 r ) rA2a0 

(25) 

i a  i aw 
-- ( r u )  +-- = 0, 
r ar r 

where all quantities are non-dimensional, r is the radial coordinate, 6 is the angle 
measured anticlockwise from the bottom boundary, u is the radial velocity, w is the 
tangential velocity, p is pressure, T is the temperature and Gr is defined by (6). The 
solution domain is now rmin < r < rmax and 0 < 6 < 1. The upper limit on r must be 
chosen so that there is a significant part of the flow not affected by the presence of 
the endwall a t  r = rmax which is absent for the asymptotic solutions found in $4. 
Setting rmax = 10 is sufficient to ensure that there is a substantial region of the flow 
not affected by the endwall whilst ensuring that the domain does not become too 
large to be feasibly simulated. At the tip, rmin is chosen so that it lies within the 
conduction-dominated regime where the velocities are small. Setting rmin = 0.1 is 
sufficient to ensure that the boundary there does not have a significant effect on the 
temperature and flow dynamics. 

The primary aim here is to compare the numerical and asymptotic solutions. 
However, the numerical model is restricted to a finite domain while the model 
formulated in $2 is not. Also, the numerical model includes a boundary at 
r = rmin > 0 which is absent in the analytical model. Thus there are extra boundary 
conditions that need to be formulated besides those that arise naturally from the 
analytical model. 

The heat flow in the tip region is dominated by conduction, thus the boundary 
condition chosen here for the temperature is simply that the temperature gradient a t  
r = rmi, matches that of the asymptotic solution, that  is 

sin (2n t) on r = rmin. 
i3T 
ar ~ ~ Y ~ c o s A ( O -  1) 
-= - 

6-2 
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FIGURE 8. Contour plot of the numerically calculated surface velocity in the ( t ,  $)-plane with 
A = 0.02, Qr = 5 x lo4 and u = 7.5. The contour interval is 

The position of the boundary at  r = rmax is chosen so that it has a small influence on 
the velocity and temperature fields in the bulk of the sidearm. For simplicity, the 
boundary condition here for the temperature is 

The boundaries at T = rmin and T = r,,, are assumed to be solid, leading to the 
velocity boundary conditions 

aT/ar=O on r = rmax. (29) 

u =  w = O  on r = rmin, 
u =  w=O on r =rmax. 

The boundary conditions on the remaining boundaries follow from $2 and are 
aT/ae = au/ae = w = o on e = 1,  
aT/M=u= w = O  on B = O .  (31) 

The scheme used for numerically simulating the above system of equations is a 
modified version of a scheme developed by Armfield (1991). Essentially, the method 
is a SIMPLE type scheme applied on a non-staggered grid with QUICK correction for 
the convective terms. A detailed description of the SIMPLE scheme and some of the 
early modifications can be found in Patankar (1980). The approximate pressure 
equation is formulated so that the scheme is elliptic (Armfield 1991). The 
computational domain is discretized used a 41 x 33 non-uniform grid. A small time 
step of 

5.1 Results and discussion 
The simulation reported here is for the transient part of the flow as computational 
restraints did not allow the simulation to run to the large-time periodic behaviour 
discussed in 54.1. Thus, this simulation is restricted to two periods of the forcing after 
it has been initiated. The values of the non-dimensional parameters used for this 
simulation are A = 0.02, cr = 7.5 and Gr = 5 x lo4. For these values of the non- 
dimensional parameters and using the O(Ao) solution to estimate the size of u, the 
ratio of the unsteady inertia term to the horizontal advection term in the radial 
momentum equation is approximately 10. This suggests that for these values of the 

I 

is required to resolve the rapid flow development in the tip. 
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t 
FIGURE 9. Contour plot of the asymptotic surface velocity in the ( t ,  %)-plane. 

The contour interval is 1 O P .  
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FIGURE 10. Comparison between the numerical (solid lines) and asymptotic (dashed lines) 
velocity profiles at  x = 5 for various times including the initial inertia-dominated regime. 

non-dimensional parameters, nonlinear effects are small, but not negligible, and so 
this simulation provides an opportunity to validate the asymptotic solutions found 
in $4 and to examine the effect that a small amount of advection has on the 
dynamics, and is also close to the value for GrA2 above which the asymptotic 
solutions fail. As before, the time-dependent behaviour is summarized by a contour 
plot of the surface velocity in the ( t ,  %)-plane. Figure 8 shows such a plot using data 
from the simulation. Figure 9 shows the corresponding plot using the asymptotic 
solution. Within the interior of the computational domain, the agreement between 
the two plots is quite good. The numerical velocities are slightly smaller than the 
analytical solution as can be seen in figure 10. This is due to the small effect that 
horizontal diffusion has had on the temperature field. This overestimation of the 
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velocities by the asymptotic solution was discussed in $4 and is due to the absence 
of horizontal conduction of heat in the O(Ao) equations. Another less significant effect 
that contributes to  the difference is horizontal advection. Even though the nonlinear 
effects are small, advection of heat reduces the size of the horizontal pressure 
gradient slightly. There is some discrepancy between the results near x = 11 where 
the solid boundary that is absent in the asymptotic solutions is influencing the flow. 
The effect of the boundary at x = 11 is restricted to O(A)  of the domain. Of particular 
interest is the position and time of appearance of the up/downwelling fronts 
discussed in 95 about which the numerical and asymptotic solutions are in excellent 
agreement. 

Figure 10 shows a comparison between the numerical and asymptotic solutions for 
the velocity profiles a t  various times a t  x = 5 .  Again, there is good agreement 
between the two solutions with the asymptotic velocities being slightly larger. The 
values of x and t chosen include the initial inertial regime where the profiles are nearly 
linear as well as the later viscous regime where the profiles are closer to cubic. 

6. Concluding remarks 
The model proposed and asymptotically solved in this paper is a limited 

representation of the true geophysical situation. Despite this, a comparison between 
the results of this paper and available field data is useful. The dimensional velocity 
in this paper is given by 

Agd,  P2 u’ = 
pocp(VP)tU.  

Using the parameter values I ,  = lo3 Wm2 and A = 0.02 from Monismith et al. (1990) 
and the usual values for the other parameters yields a velocity of 5 cm s-l for a 
typical value of v of m s-~. The drogue measurements of Monismith et al. yielded 
a peak velocity of 7.5 cm s-l while the measurements of Adams & Wells (1984) 
yielded velocities up to 15 em s-l. Thus, the magnitude of the velocities predicted by 
this model are consistent with those measured in the field. Monismith et al. observe 
that the lag between a reversal of the forcing and a reversal of the flow within a 
sidearm can be longer than the 6 hours suggested by the large-time response 
considered in $4.1. However the discussion in $4.2 shows that even when the forcing 
is periodic, the lag can be up to 12 hours if the transient effects are taken into 
account. I n  particular, if the magnitude of the, say, daytime forcing is less than that 
of the previous night’s forcing then it will take longer for the weaker forcing to 
overcome the night-time flow. Thus it would appear that  the model considered in this 
paper has captured much of the bulk flow dynamics of a periodically forced reservoir 
sidearm. 

The authors are grateful to Greg Ivey, Kreshimir Zic and the anonymous reviewers 
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